Nutritional Interventions for Aging: Vitamin E and Selenium Impact on Immune Function
DOI:
https://doi.org/10.70788/ern.2.1.2025.15Abstract
Elderly mortality as well as morbidity have been affected by immune-senescence, or immune system ageing. Age-related quantitative and qualitative shifts affect innate and adaptive immune responses, innate and adaptive immune cells, soluble immune-mediated substances, lymphoid and non-lymphoid distant tissue, etc. The thymus gland, which is an essential organ of the immune system responsible to produce T lymphocytes, begins to shrink after puberty and continues to do so as a person ages. This process is known as thymic involution. As the thymus gland becomes smaller and less active, the production of new T cells declines, and the existing T cells become less effective. This can lead to a weaker immune response to infections and disease. However, antigen-presenting cells and B cells are less affected because they are not produced in the thymus gland. Other factors such as chronic inflammation, stress, poor diet, and lack of exercise can also contribute to age-related immune decline. It’s important to maintain a healthy lifestyle and take steps to boost the immune system as one gets older.
References
• Addor, F. A., Cotta, S. A., Vieira, J., & Abreu, M, C. S. (2018). Improvement of dermal parameters in aged skin after oral use of a nutrient supplement. Clinical, cosmetic and investigational dermatology, 195-201.
• Annamalai, K., & Nanda, A. (2017). Biological aging and life span based on entropy stress via organ and mitochondrial metabolic loading. Entropy, 19(10), 566.
• Bigagli, E, D., Ambrosio, M., Cinci, L., Niccolai, A., Biondi, N., Rodolfi, L., Dos Santos Nascimiento, L. B., Tredici, M. R., Luceri, C. A. (2021). Comparative in vitro evaluation of the anti-inflammatory effects of a tisochrysis lutea extract and fucoxanthin. Marine Drugs. 19(6):334.
• Bachmann, M. C., Bellalta, S., Basoalto, R., Gomez-Valenzuela, F., Jalil, Y., Lepez, M., Matamoros, A., and von Bernhardi, R. (2020). The challenge by multiple environmental and biological factors induce inflammation in aging: their role in the promotion of chronic disease. Frontiers in Immunology, 11, p.570083.
• Blanca, I. R., Bere, E. W., Young, H. A., and Ortaldo, J. R. (2001). Human B cell activation by autologous NK cells is regulated by CD40-CD40 ligand interaction: Role of memory B cells and CD5+ B cells. J. Immunol. 167, 6132–6139.
• Bryceson, Y. T., March, M. E., Ljunggren, H. G., Long, E. O. (2006). Activation, coactivation, and costimulation of resting human natural killer cells. Immunological reviews. 214(1):73-91
• Braud, V.M., Allan, D.S., O’Callaghan, C.A., Sandstorm, K., D’Andrea, A., Ogg, G.S., Lazetic, S., Young, N.T., Bell, J.I., Phillips, J.H. and Lanier, L.L., (1998). HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature, 391(6669), pp.795-799.
• Canossi, A., Aureli, A., Del Beato, T., Rossi, P., Franceschilli, L., De Sanctis, F., Sileri, P., di Lorenzo, N., Buonomo, O., Lauro, D., and Venditti, A. (2016). Role of KIR and CD16A genotypes in colorectal carcinoma genetic risk and clinical stage. Journal of translational medicine. 4:1-8.
• Castelo-Branco, C., and Soveral, I. (2014). The immune system and aging: a review. Gynecological Endocrinology. 30(1):16-22.
• Chen, Z., Chen, P., Wu, H., Shi, R., Su, W., Wang, Y., & Li, P. (2020). Evaluation of naringenin as a promising treatment option for COPD based on literature review and network pharmacology. Biomolecules, 10(12), 1644.
• Cosman, D., Müllberg, J., Sutherland, C. L., Chin, W., Armitage, R., Fanslow, W., & Chalupny, N. J. (2001). ULBPs, novel MHC class I–related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity, 14(2), 123-133.
• Franceschi, C., Bonafe, M., and Valensin, S. (2000). Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 18(16):1717-20.
• Gayoso, I., Sanchez-Correa, B., Campos, C., Alonso, C., Pera, A., Casado, J. G., Morgado, S., Tarazona, R., and Solana, R. (2011). Immunosenescence of human natural killer cells. Journal of innate immunity. 3(4):337-43.
• Gęgotek, A., Jarocka-Karpowicz, I., & Skrzydlewska, E. (2020). Cytoprotective effect of ascorbic acid and rutin against oxidative changes in the proteome of skin fibroblasts cultured in a three-dimensional system. Nutrients, 12(4), 1074.
• Grewe, M. (2001). Chronological ageing and photoageing of dendritic cells. Clinical and experimental dermatology. 26(7):608-12.
• Higuchi, Y., Zeng, H., and Ogawa, M. (2003). CD38 expression by hematopoietic stem cells of newborn and juvenile mice. Leukemia. 17(1):171-4.
• Jamieson, A. M., Diefenbach, A., McMahon, C. W., Xiong, N., Carlyle, J. R., Raulet, D. H. (2002). The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity. 17(1):19-29.
• Jorissen, M., Willems, T., Van Der Schueren, B. (1998). Nasal ciliary beat frequency is age independent. The Laryngoscope. 108(7):1042-7.
• Kadri N, Luu Thanh T, Höglund P. (2015). Selection, tuning, and adaptation in mouse NK cell education. Immunological reviews. 67(1):167-77.
• Kottner, J., Lichterfeld, A., and Blume‐Peytavi, U. (2013). Maintaining skin integrity in the aged: a systematic review. British Journal of Dermatology. 169(3):528-42.
• Kong, S. Z., Li, J. C., Li, S. D., Liao, M. N., Li, C. P., Zheng, P. J., Guo, M. H., Tan, W. X., Zheng, Z. H. and Hu, Z. (2018). Anti-aging effect of chitosan oligosaccharide on d-galactose-induced subacute aging in mice. Marine Drugs, 16(6), p.181.
• Krabbe, K. S., Pedersen, M., Bruunsgaard, H. (2004). Inflammatory mediators in the elderly. Experimental gerontology. 39(5):687-99.
• Li, S., Liu, M., Zhang, C., Tian, C., Wang, X., Song, X., Jing, H., Gao, Z., Ren, Z., Liu, W. and Zhang, J. (2018). Purification, in vitro antioxidant and in vivo anti-aging activities of soluble polysaccharides by enzyme-assisted extraction from Agaricus bisporus. International journal of biological macromolecules, 109, pp.457-466.
• Macheret, F., Boerrigter, G., McKie, P., Costello-Boerrigter, L., Lahr, B., Heublein, D., Sandberg, S., Ikeda, Y., Cataliotti, A., Bailey, K., and Rodeheffer, R. (2011). Pro–B-type natriuretic peptide1–108 circulates in the general community: plasma determinants and detection of left ventricular dysfunction. Journal of the American College of Cardiology, 57(12), pp.1386-1395.
• Makrigiannis, A. P., Anderson, S. K., (2000). Ly49 gene expression in different inbred mouse strains. Immunologic research. 21(1):39-47.
• Moretta, L., Montaldo, E., Vacca, P., Del Zotto, G., Moretta, F., Merli, P., Locatelli, F., and Mingari, M. C. (2014). Human natural killer cells: Origin, receptors, function, and clinical applications. Int. Arch. Allergy Immunol. 164, 253–264.
• Moesta AK, Parham P. (2012). Diverse functionality among human NK cell receptors for the C1 epitope of HLA-C: KIR2DS2, KIR2DL2, and KIR2DL3. Frontiers in immunology. 22(3). 336.
• Mumtaz, S., Shaukat, A., Tahir, H. M., Kazmi, S. A. R., Shakir, H. A., Mughal, T. A., Mumtaz, S., Summer, M., and Farooq, M. A. (2021). Aging and its treatment with vitamin C: a comprehensive mechanistic review. Molecular Biology Reports. 1-13.
• Martínez-Lostao, L., Anel, A., and Pardo, J. (2015). How do cytotoxic lymphocytes kill cancer cells? Clinical cancer research. 21(22):5047-56.
• Narni-Mancinelli E, Ugolini S, Vivier E. (2013). Tuning the threshold of natural killer cell responses. Current opinion in immunology. 25(1):53-8.
• Nassor, F., Rafika, J., Denis, S. F., Biard, A., Maïza, D., Garcia, P., Serena, P., Philippe, J. D., and Frank, Y. (2020). Long term gene expression in human induced pluripotent stem cells and cerebral organoids to model a neurodegenerative disease. Frontiers in Cellular Neuroscience. 1(14).
• Pahl, J.; Cerwenka, A. (2017). Tricking the balance: NK cells in anti-cancer immunity. Immunobiology. 222, 11–20.
• Pawelec, G. (1999). Immunosenescence: impact in the young as well as the old. Mechanisms of ageing and development. 108(1):1-7
• Plat, C. I., Eckersley, A., Ozols, M., & Sherratt, M. J. (2022). Elastin, Aging-Related Changes in. In Encyclopedia of Gerontology and Population Aging (pp. 1582-1588). Cham: Springer International Publishing.
• Rabinowich, H., Price, L., Herberman, R. B., & Whiteside, T. L. (1994). Expression and function of CD7 molecule on human natural killer cells. Journal of immunology (Baltimore, Md.: 1950), 152(2), 517-526.
• Rinnerthaler, M., & Richter, K. (2018). The influence of calcium on the skin pH and epidermal barrier during aging. pH of the Skin: Issues and Challenges, 54, 79-86.
• Saul, D., & Kosinsky, R. L. (2021). Epigenetics of aging and aging-associated diseases. International journal of molecular sciences, 22(1), 401
• Smith, K. M., Wu, J., Bakker, A. B., Phillips, J. H., and Lanier, L. L. (1998). Cutting edge: Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. The Journal of Immunology. 161(1):7-10.
• Targonski, P. V., Jacobson, R. M., Poland, G. A. (2007). Immunosenescence: role and measurement in influenza vaccine response among the elderly. Vaccine. 25:3066.
• Whan, K, S., Mo, J, H., Kim, J, W., Kim, D. Y., Rhee, C. S., Hee, L, C., and Min, Y. G. (2007). Change of nasal function with aging in Korean. Acta Oto-Laryngologica. 127(sup558):90-4
• Wei, X. B., Wang, Z. H., Liao, X. L., Guo, W. X., Wen, J. Y., Qin, T. H., & Wang, S. H. (2020). Efficacy of vitamin C in patients with sepsis: An updated meta-analysis. European journal of pharmacology, 868, 172889.
• West, B. J., Deng, S., & Palu, A. K. (2020). Vitamin C, grape seed extract and citrus bioflavonoids protect the skin against photoaging: a review. Journal of Biosciences and Medicines, 8(12), 116-134.
• Wang, A. S., & Dreesen, O. (2018). Biomarkers of cellular senescence and skin aging. Frontiers in Genetics, 9, 247.
• Yokoyama, W. M., Kim, S. (2006). Licensing of natural killer cells by self‐major histocompatibility complex class I. Immunological reviews. 214(1):143-54.
• Zingoni, Alessandra, et al. (2004). Crosstalk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. The Journal of Immunology. 173.6. 3716-3724.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License